Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 224: 103842, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32454255

RESUMO

Intestinal epithelial homeostasis is regulated by a complex network of signaling pathways. Among them is estrogen signaling, important for the proliferation and differentiation of epithelial cells, immune signaling and metabolism. The mycotoxin zearalenone (ZEN) is an estrogen disruptor naturally found in food and feed. The exposure of the intestine to ZEN has toxic effects including alteration of the immune status and is possibly implicated in carcinogenesis, but the molecular mechanisms linked with these effects are not clear. Our objective was to explore the proteome changes induced by a short, non-cytotoxic exposure to ZEN in the intestine using pig jejunal explants. Our results indicated that ZEN promotes little proteome changes, but significantly related with an induction of ERα signaling and a consequent disruption of highly interrelated signaling cascades, such as NF-κB, ERK1/2, CDX2 and HIF1α. The toxicity of ZEN leads also to an altered immune status characterized by the activation of the chemokine CXCR4/SDF-1 axis and an accumulation of MHC-I proteins. Our results connect the estrogen disrupting activity of ZEN with its intestinal toxic effect, associating the exposure to ZEN with cell-signaling disorders similar to those involved in the onset and progression of diseases such as cancer and chronic inflammatory disorders. SIGNIFICANCE: The proteomics results presented in our study indicate that the endocrine disruptor activity of ZEN is able to regulate a cascade of highly inter-connected signaling events essential for the small intestinal crypt-villus cycle and immune status. These molecular mechanisms are also implicated in the onset and progress of intestinal immune disorders and cancer indicating that exposure to ZEN could play an important role in intestinal pathogenesis.


Assuntos
Micotoxinas , Zearalenona , Animais , Estrogênios , Intestinos , Proteoma , Suínos , Zearalenona/toxicidade
2.
Toxins (Basel) ; 12(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053894

RESUMO

The mycotoxin zearalenone (ZEN), which frequently contaminates cereal-based human food and animal feed, is known to have an estrogenic effect. The biological response associated with exposure to ZEN has rarely been reported in organs other than the reproductive system. In the intestine, several studies suggested that ZEN might stimulate molecular changes related to the activation of early carcinogenesis, but the molecular mechanisms behind these events are not yet known. In this study, we investigated gene expression and changes in protein abundance induced by acute exposure to ZEN in the jejunum of castrated male pigs using an explant model. Our results indicate that ZEN induces the accumulation of ER but not ER, modulates Wnt/ß-catenin and TGF- signaling pathways, and induces molecular changes linked with energy sensing and the antimicrobial activity without inducing inflammation. Our results confirm that the intestine is a target for ZEN, inducing changes that promote cellular proliferation and could contribute to the onset of intestinal pathologies.


Assuntos
Homeostase/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Zearalenona/toxicidade , Ração Animal , Animais , Castração , Citocinas/genética , Citocinas/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Contaminação de Alimentos , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Homeostase/genética , Homeostase/imunologia , Jejuno/imunologia , Jejuno/metabolismo , Jejuno/patologia , Masculino , Receptores de Adipocina/genética , Receptores de Adipocina/metabolismo , Suínos , Fatores de Tempo , Fator de Crescimento Transformador beta/genética , Via de Sinalização Wnt/genética , Zearalenona/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...